Th17 lymfocyty a interleukin-17A v průběhu těžké komunitní pneumonie, srovnání s etiologií a výsledkem
Authors:
M. Moravec; T. Nejtek; M. Ibrahimová; R. Zazula; M. Müller
Authors‘ workplace:
Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
1; Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University, Hospital, Prague, Czech Republic
2
Published in:
Epidemiol. Mikrobiol. Imunol. 73, 2024, č. 3, s. 131-139
Category:
Original Papers
doi:
https://doi.org/10.61568/emi/11-6352/20240726/138064
Overview
Cíl: Observační studie pacientů diagnostikovaných s těžkou komunitní pneumonií (sCAP) sledovala hladiny interleukinu-17A a počtu T helper 17 (Th17) lymfocytů v periferní cirkulaci a tekutině z bronchoalveolární laváže (BAL) v časném průběhu komunitní pneumonie různé etiologie a porovnala je s charakteristikami pacientů a klinickým výsledkem.
Materiál a metody: Kohorta 74 pacientů s těžkou komunitní pneumonií byla analyzována s identifikací jednotlivých původců pneumonie. Podle etiologie byli pacienti rozděleni do tří skupin: bakteriální, virové a smíšené etiologie. Počet Th17 lymfocytů a koncentrace IL-17A byly měřeny s využitím průtokové cytometrie a metody ELISA v periferní krvi a tekutině z BAL.
Data byla porovnána podle etiologie sCAP a statistickou analýzou stanovena jejich korelace s 30a 90denní mortalitou. Výsledky: Statistická korelace mezi počtem Th17 lymfocytů a koncentrací IL-17A v krvi ani v tekutině z BAL s 30a 90denní mortalitou nebyla prokázána. Nicméně, zvýšený počet Th17 lymfocytů v periferní cirkulaci, nikoli však v tekutině z BAL, v časném průběhu sCAP koreloval se zvýšeným relativním rizikem úmrtí. Dalšími faktory zvyšujícími relativní riziko smrti byl věk a mužské pohlaví.
Závěr: Hladiny Th17 a IL-17A v systémové cirkulaci v časném průběhu sCAP (v prvních 7 dnech od diagnózy) mohou korelovat s tíží a mortalitou sCAP.
Klíčová slova:
těžká komunitní pneumonie (sCAP) – Th17 lymfocyty – interleukin-17A
Sources
- REMAP-CAP Trial Internet. 2024 cited 2024 May 13. Available at www: https://www.remapcap.org.
- Restrepo MI, Faverio P, Anzueto A. Long-term prognosis in community-acquired pneumonia. Curr Opin Infect Dis., 2013;26:151–158.
- Rivero-Calle I, Pardo-Seco J, Aldaz P, et al. Incidence and risk factor prevalence of community-acquired pneumonia in adults in primary care in Spain (NEUMO-ES-RISK project). BMC Infectious Diseases, 2016;16:645.
- Tsoumani E, Carter JA, Salomonsson S, et al. Clinical, economic, and humanistic burden of community acquired pneumonia in Europe: a systematic literature review. Expert Review of Vaccines. 2023;22:876–884.
- Theilacker C, Sprenger R, Leverkus F, et al. Population-based incidence and mortality of community-acquired pneumonia in Germany. PLoS One, 2021;16:e0253118.
- Ferrer M, Travierso C, Cilloniz C, et al. Severe community-acquired pneumonia: Characteristics and prognostic factors in ventilated and non-ventilated patients. Kou YR, editor. PLoS ONE, 2018;13:e0191721.
- Niederman MS, Torres A. Severe community-acquired pneumonia. Eur Respir Rev., 2022;31:220123.
- Sligl WI, Marrie TJ. Severe Community-Acquired Pneumonia. Critical Care Clinics, 2013;29:563–601.
- Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. Clin Infect Dis., 2007;44:S27–S72.
- Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol., 2009;2:403–411.
- Paats MS, Bergen IM, Hanselaar WEJJ, et al. T helper 17 cells are involved in the local and systemic inflammatory response in community-acquired pneumonia. Thorax, 2013;68:468–474.
- Paiva IA, Badolato-Corrêa J, Familiar-Macedo D, et al. Th17 Cells in Viral Infections—Friend or Foe? Cells, 2021;10:1159.
- Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine. 2016;34:1504–1514.
- Hoe E, Anderson J, Nathanielsz J, et al. The contrasting roles of Th17 immunity in human health and disease. Microbiology and Immunology, 2017;61:49–56.
- Paroli M, Caccavale R, Fiorillo MT, et al. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens, 2022;11:1547.
- Lu B, Liu M, Wang J, et al. IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal Immunology, 2020;13:824–835.
- Luo Y, Li C, Zhou Z, et al. Biological functions of IL-17-producing cells in mycoplasma respiratory infection. Immunology, 2021;164:223–230.
- Tsai H-C, Velichko S, Hung L-Y, et al. IL-17A and Th17 Cells in Lung Inflammation: An Update on the Role of Th17 Cell Differentiation and IL-17R Signaling in Host Defense against Infection. Clinical and Developmental Immunology, 2013;2013:1–12.
- Valeri M, Raffatellu M. Cytokines IL-17 and IL-22 in the host response to infection. Napier B, editor. Pathogens and Disease, 2016;74:ftw111.
- Thomas R, Qiao S, Yang X. Th17/Treg Imbalance: Implications in Lung Inflammatory Diseases. Int J Mol Sci., 2023;24:4865.
- Haas LEM, Termorshuizen F, den Uil CA, et al. Increased mortality in ICU patients ≥70 years old with COVID-19 compared to patients with other pneumonias. J Am Geriatr Soc., 2023;71:1440– 1451.
- Nolley EP, Sahetya SK, Hochberg CH, et al. Outcomes Among Mechanically Ventilated Patients With Severe Pneumonia and Acute Hypoxemic Respiratory Failure From SARS-CoV-2 and Other Etiologies. JAMA Netw Open, 2023;6:e2250401.
- Sirvent JM, Carmen de la Torre M, Lorencio C, et al. Predictive factors of mortality in severe community-acquired pneumonia: a model with data on the first 24h of ICU admission. Med Intensiva, 2013;37:308–315.
- Niu H-Q, Zhao X-C, Li W, et al. Characteristics and reference ranges of CD4+T cell subpopulations among healthy adult Han Chinese in Shanxi Province, North China. BMC Immunol., 2020;21:44.
- Orlov M, Wander PL, Morrell ED, et al. A Case for Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. The Journal of Immunology, 2020;205:892–898.
- Xu D, Wu Y, Gao C, et al. Characteristics of and reference ranges for peripheral blood lymphocytes and CD4+ T cell subsets in healthy adults in Shanxi Province, North China. J Int Med Res., 2020;48:0300060520913149.
- Corica B, Tartaglia F, D’Amico T, et al. Sex and gender differences in community-acquired pneumonia. Intern Emerg Med., 2022;17:1575–1588.
- Chen G, Zhang P-G, Li J-S, et al. Th17 cell frequency and IL-17A production in peripheral blood of patients with non-small-cell lung cancer. J Int Med Res., 2020;48:300060520925948.
- Sánchez-Vargas LA, Hernández-Flores KG, Thomas-Dupont P, et al. Characterization of the IL-17 and CD4+ Th17 Cells in the Clinical Course of Dengue Virus Infections. Viruses, 2020;12:1435.
- Brunialti MKC, Santos MC, Rigato O, et al. Increased percentages of T helper cells producing IL-17 and monocytes expressing markers of alternative activation in patients with sepsis. PLoS One, 2012;7:e37393.
- Feng C-M, Wang X-M, Li M-D, et al. Serum interleukin-17 predicts severity and prognosis in patients with community acquired pneumonia: a prospective cohort study. BMC Pulmonary Medicine, 2021;21:393.
- Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. Burns Trauma, 2019;7:37.
- Sasaki JR, Zhang Q, Schwacha MG. Burn induces a Th-17 inflammatory response at the injury site. Burns, 2011;37:646–651.
- Costa RT, Araújo OR de, Brunialti MKC, et al. T helper type cytokines in sepsis: time-shared variance and correlation with organ dysfunction and hospital mortality. Braz J Infect Dis., 2019;23:79–85.
- Guglani L, Khader SA. Th17 cytokines in mucosal immunity and inflammation. Curr Opin HIV AIDS, 2010;5:120–127.
- Kolls JK, Khader SA. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev., 2010;21:443–448.
- Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020;369:eabc8511.
- Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2 – specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol., 2020;5:eabd2071.
Do redakce došlo dne 20. 5. 2024.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
Most read in this issue
- Epidemie septických onemocnění u pacientů operovaných na operačních sálech nemocnice primárního typu
- MUDr. Josef Richter, CSc. (*8. 2. 1935–†13. 8. 2024)
- Vzpomínka na MUDr. Karla Markvarta, CSc. (*28. 12. 1933 Ústí nad Labem – †29. 5. 2024 Praha)
- Riadenie integrovaného prístupu testovania HIV, HCV a syfilisu v komunitných dobrovoľných poradenských a testovacích službách na Slovensku