#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Streptococcus pneumoniae serotypes 8 and 22F causing invasive pneumococcal disease in the Czech Republic in 2014–2020: whole genome sequencing (WGS) analysis


Authors: J. Kozáková 1;  S. Vohrnová 1,2;  M. Honskus 1,2;  P. Křížová 1
Authors‘ workplace: Národní referenční laboratoř pro streptokokové nákazy, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha 1;  3. lékařská fakulta Univerzity Karlovy, Praha 2
Published in: Epidemiol. Mikrobiol. Imunol. 73, 2024, č. 2, s. 84-97
Category: Original Papers
doi: https://doi.org/10.61568/emi/11-6306/20240424/137081

Overview

Aim: An analysis is presented of whole genome data of Streptococcus pneumoniae serotypes 8 and 22F isolated in the Czech Republic from invasive pneumococcal disease (IPD) in 2014–2020. New multivalent pneumococcal conjugate vaccines (PCVs) are effective against these serotypes. Recently, serotypes 8 and 22F have been among the leading causes of IPD in the Czech Republic. S. pneumoniae isolates from the Czech Republic were compared with those of the same serotypes recovered in other countries in the same period and available in the international database PubMLST.

Material and methods: Isolates from IPD of serotypes 8 (22 isolates) and 22F (21 isolates) recovered in the Czech Republic in 2014–2020 were subjected to whole genome sequencing (WGS). The genomes were analysed and compared using the international database PubMLST.

Results: Most of the studied Czech serotype 8 isolates belong to two main subpopulations. The first subpopulation, dominated by ST-53 isolates, is part of a highly abundant group of genetically close European and non-European isolates that are clearly separated on the phylogenetic network. The second subpopulation of Czech serotype 8 isolates (dominated by ST-404) is more genetically variable and forms a separate lineage on the global phylogenetic network, with no other European isolates. Czech isolates of serotype 22F are a homogeneous population with a clear predominance of ST-433, which belongs to a genetically close European population.

Conclusion: The analysis of WGS data of IPD isolates of serotypes 8 and 22F provided a detailed insight into the genetic relationships between the Czech populations of these serotypes. It also allowed comparison of the Czech populations with the matched populations from other European and non-European countries. The obtained results add to the body of knowledge about the spread of genetic lineages causing IPD in the Czech Republic in the post-vaccination period and provide a basis for considering whether the use of the new multivalent PCVs in the Czech Republic would be beneficial.

Keywords:

surveillance – Streptococcus pneumoniae – serotype – whole genome sequencing


Sources
  1. WHO. Pneumococcal vaccines WHO position paper – 2012. Wkly Epidemiol Rec, 2012;87(14):129–144.
  2. De Wals P, Lefebvre B, Markowski F, et al. Impact of 2+1 pneumococcal conjugate vaccine program in the province of Quebec, Canada. Vaccine, 2014;32(13):1501–1506. DOI: 10.1016/j.vaccine.2013.11.028.
  3. D‘Ancona F, Caporali MG, Del Manso M, et al. Invasive pneumococcal disease in children and adults in seven Italian regions after the introduction of the conjugate vaccine, 2008–2014. Epidemiol Prev, 2015;39(4):134–138.
  4. Waight PA, Andrews NJ, Ladhani S, et al. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis, 2015;15(5):535–543. DOI: 10.1016/S1473-3099(15)70044-7.
  5. Savulescu C, Křížová P, Lepoutre A, et al. Effect of high-valency pneumococcal conjugate vaccines on invasive pneumococcal disease in children in SpIDnet countries: an observational multicentre study. Lancet Respir Med, 2017;5(8):648–656. DOI: 10.1016/S2213-2600(17)30110-8.
  6. Kozáková J, Křížová P, Malý M. Impact of pneumococcal conjugate vaccine on invasive pneumococcal disease in children under 5 years of age in the Czech Republic. PLoS One, 2021;16(2):e0247862. DOI: 10.1371/journal.pone.0247862.
  7. Feikin DR, Kagucia EW, Loo JD, et al. Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites. PLoS Med, 2013;10(9):e1001517. DOI: 10.1371/journal.pmed.1001517.
  8. Slotved HC, Dalby T, Harboe ZB, et al. The incidence of invasive pneumococcal serotype 3 disease in the Danish population is not reduced by PCV-13 vaccination. Heliyon, 2016;2(11):e00198. DOI: 10.1016/j.heliyon.2016.e00198.
  9. Principi N, Di Cara G, Bizzarri I, et al. Prevention of invasive pneumococcal disease: Problems emerged after some years of the 13-valent pneumococcal conjugate vaccine use. Curr Infect Dis Rep, 2018;20(1):1. DOI: 10.1007/s11908-018-0607-z.
  10. Andrews N, Kent A, Amin-Chowdhury Z, et al. Effectiveness of the seven-valent and thirteen-valent pneumococcal conjugate vaccines in England: The indirect cohort design, 20062018. Vaccine, 2019;37(32):4491–4498. DOI: 10.1016/j.vaccine.2019.06.071.
  11. Didelot X, Walker AS, Peto TE, et al. Within-host evolution of bacterial pathogens. Nat Rev Microbiol, 2016;14(3):150–162. DOI: 10.1038/nrmicro.2015.13.
  12. Gladstone RA, Lo SW, Lees JA, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine, 2019;43:338–346. DOI: 10.1016/j.ebiom.2019.04.021.
  13. Bentley SD, Lo SW. Global genomic pathogen surveillance to inform vaccine strategies: a decade-long expedition in pneumococcal genomics. Genome Medicine, 2021;13(84). DOI: 10.1186/ s13073-021-00901-2.
  14. Vyhláška č. 275/2010 Sb., kterou se mění vyhláška č. 473/2008 Sb., o systému epidemiologické bdělosti pro vybrané infekce. Příloha č. 21 invazivní pneumokoková onemocnění. Dostupné na www: https://www.zakonyprolidi.cz/cs/2010-275.
  15. Zprávy Centra epidemiologie a mikrobiologie. Dostupné na www: https://szu.cz/publikace-szu/casopisy-v-szu/zpravy-centra-epidemiologie-a-mikrobiologie/.
  16. Kozáková J, Honskus M, Okonji Z. Implementace a využití metody sekvenace celého genomu (WGS) v surveillance invazivního pneumokokového onemocnění, Česká republika, 2017–2019. Epidemiol Mikrobiol Imunol, 2020;69(3):134–141.
  17. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics,2010;11(5):1–12. DOI: 10.1002/0471250953.bi1105s31.
  18. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res, 2018;3:124. DOI: 10.12688/wellcomeopenres.14826.1.
  19. Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998;95(6):3140–3145. DOI: 10.1073/pnas.95.6.3140.
  20. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology, 1998;144(11):3049– 3060. DOI: 10.1099/00221287-144-11-3049.
  21. Jolley KA, Chan MS, Maiden MC. MlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 2004;5:86. DOI: 10.1186/1471-2105-5-86. PMID: 15230973.
  1. Jolley KA, Bliss CM, Bennett JS, et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology, 2012;158(4):1005–1015. DOI: 10.1099/mic.0.055459-0.
  2. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010;11:595. DOI: 10.1186/1471-2105-11-595.
  3. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics, 1998;14(1):68–73. DOI: 10.1093/bioinformatics/14.1.68.
  4. Sanz JC, Rodríguez-Avial I, Ríos E, et al. Increase of serotype 8, ST53 clone, as the prevalent strain of Streptococcus pneumoniae causing invasive disease in Madrid, Spain (2012–2015). Enferm Infecc Microbiol Clin, 2020;38(3):105–110. DOI: 10.1016/j. eimc.2019.05.006.
  5. González-Díaz A, Berbel D, Ercibengoa M, et al. Genomic features of predominant non-PCV13 serotypes responsible for adult invasive pneumococcal disease in Spain. J Antimicrob Chemother, 2022;77(9):2389–2398. DOI: 10.1093/jac/dkac199.
  6. Hansen CB, Fuursted K, Valentiner-Branth P, et al. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 8 in Denmark. BMC Infect Dis, 2021;21(1):421. DOI: 10.1186/s12879-021-06103-w.
  7. Caierão J, Hawkins P, Sant‘anna FH, et al. Serotypes and genotypes of invasive Streptococcus pneumoniae before and after PCV10 implementation in southern Brazil. PLoS One, 2014;9(10):e111129. DOI: 10.1371/journal.pone.0111129.
  8. Miernyk KM, Bulkow LR, Case SL, et al. Population structure of invasive Streptococcus pneumoniae isolates among Alaskan children in the conjugate vaccine era, 2001 to 2013. Diagn Microbiol Infect Dis, 2016;86(2):224–230. DOI: 10.1016/j.diagmicrobio.2016.07.004.
  9. Golden AR, Adam HJ, Karlowsky JA, et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: the SAVE study, 2011–15.
  1. Serrano I, Melo-Cristino J, Carriço JA, et al. Characterization of the genetic lineages responsible for pneumococcal invasive disease in Portugal. J Clin Microbiol, 2005;43(4):1706–1715. DOI: 10.1128/JCM.43.4.1706-1715.2005.
  2. Linkevicius M, Cristea V, Siira L, et al. Outbreak of invasive pneumococcal disease among shipyard workers, Turku, Finland, May to November 2019. Euro Surveill, 2019;24(49):1900681. DOI: 10.2807/1560-7917.ES.2019.24.49.1900681.
  3. Sempere J, de Miguel S, González-Camacho F, et al. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front Microbiol, 2020;11:309. DOI: 10.3389/fmicb.2020.00309.
  1. Horácio AN, Silva-Costa C, Diamantino-Miranda J, et al. Population Structure of Streptococcus pneumoniae Causing Invasive Disease in Adults in Portugal before PCV13 Availability for Adults: 2008–2011. PLoS One, 2016;11(5):e0153602. DOI: 10.1371/journal.pone.0153602.
  2. Pichon B, Ladhani SN, Slack MP, et al. Changes in molecular epidemiology of Streptococcus pneumoniae causing meningitis following introduction of pneumococcal conjugate vaccination in England and Wales. J Clin Microbiol, 2013;51(3):820–827. DOI: 10.1128/JCM.01917-12.
  3. Nakano S, Fujisawa T, Ito Y, et al. Serotypes, antimicrobial susceptibility, and molecular epidemiology of invasive and non-invasive Streptococcus pneumoniae isolates in paediatric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study conducted in Japan in 2012–2014. Vaccine, 2016;34(1):67–76. DOI: 10.1016/j.vaccine.2015.11.015.
  4. Chang Q, Stevenson AE, Croucher NJ, et al. Stability of the pneumococcal population structure in Massachusetts as PCV13 was introduced. BMC Infect Dis, 2015;15:68. DOI: 10.1186/s12879015-0797-z.
  5. Metcalf BJ, Gertz RE Jr, Gladstone RA, et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect, 2016;22(1):60.e9–60.e29. DOI: 10.1016/j.cmi.2015.08.027.
  6. Demczuk WHB, Martin I, Hoang L, et al. Phylogenetic analysis of emergent Streptococcus pneumoniae serotype 22F causing invasive pneumococcal disease using whole genome sequencing. PLoS One, 2017;12(5):e0178040. DOI: 10.1371/journal. pone.0178040.
  7. Cleary DW, Devine VT, Jefferies JM, et al. Comparative Genomics of Carriage and Disease Isolates of Streptococcus pneumoniae Serotype 22F Reveals Lineage-Specific Divergence and Niche Adaptation. Genome Biol Evol, 2016;8(4):1243–1251. DOI: 10.1093/gbe/evw066. J Antimicrob Chemother, 2018;73(suppl_7):vii20–vii31. DOI: 10.1093/jac/dky157.

Podpora projektu

Podpořeno z programového projektu Ministerstva zdravotnictví ČR s reg. č. NU22-09-00433.

Do redakce došlo dne 2. 1. 2024.

Adresa pro korespondenci:
MUDr. Jana Kozáková
SZÚ Praha
Šrobárova 49/48 100 00 Praha 10
e-mail:
jana.kozakova@szu.cz

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#