Steroid myopathy
Authors:
M. Klein
Authors‘ workplace:
Revmatologický ústav Praha a Revmatologická klinika 1. LF UK, Praha
Published in:
Čes. Revmatol., 27, 2019, No. 3, p. 144-150.
Category:
Review Article
Overview
Steroid myopathy is caused by excessive amount of glucocorticoids (GC) of endogenous or, more frequently, exogenous origin. Its underlying condition is atrophy of muscle fibres. Type-II muscle fibres are involved preferentially and the atrophy is dominantly based on induction of proteolysis and concomitantly decreased proteosynthesis and due to dysregulation of muscle growth factors insulin-like growth factor-I (IGF-I) and myostatin. It develops after long-term use of high-dose of GC, the fluorinated forms are of higher risk. The main manifestation is progressive painless skeletal muscle weakness affecting predominantly proximal and limb-girdle muscles, normal or slightly elevated serum levels of muscle enzymes are often seen. The treatment is based on reduction or cessation of GC use; in case of endogenous origin of GC the underlying disease needs to be treated.
Keywords:
glucocorticoids – steroid myopathy – muscle atrophy
Sources
1. Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism) 1932. Obes Res 1994; 2(5): 486–508.
2. Pereira RM, Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine 2011; 78(1): 41–44. doi:10.1016/j.jbspin.2010.02.025
3. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45(10): 2163–2172. doi:10.1016/j.biocel.2013.05.036
4. Ehler E, Zámečník J. Toxické myopatie. Neurol. praxi 2016; 17(6): 386–390.
5. Anagnos A, Ruff RL, Kaminski HJ. Endocrine neuromyopathies. Neurol Clin 1997; 15(3): 673–696.
6. Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 2008; 197(1): 1–10. doi:10.1677/joe-07-0606
7. Kostyo JL, Redmond AF. Role of protein synthesis in the inhibitory action of adrenal steroid hormones on amino acid transport by muscle. Endocrinology 1966; 79(3): 531–540. doi:10.1210/endo-79-3-531
8. Liu Z, Li G, Kimball SR, Jahn LA, Barrett EJ. Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 287(2): E275–281. doi:10.1152/ajpendo.00457.2003
9. Shah OJ, Kimball SR, Jefferson LS. Acute attenuation of translation initiation and protein synthesis by glucocorticoids in skeletal muscle. Am J Physiol Endocrinol Metab 2000; 278(1): E76–82. doi:10.1152/ajpendo.2000.278.1.E76
10. Shah OJ, Kimball SR, Jefferson LS. Among translational effectors, p70S6k is uniquely sensitive to inhibition by glucocorticoids. Biochem J 2000; 347(Pt 2): 389–397. doi:10.1042/0264-6021:3470389
11. te Pas MF, de Jong PR, Verburg FJ. Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family. Mol Biol Rep 2000; 27(2): 87–98.
12. Hasselgren PO. Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999; 2(3): 201–205.
13. Bodine SC, Furlow JD. Glucocorticoids and Skeletal Muscle. Adv Exp Med Biol 2015; 872: 145–176. doi:10.1007/978-1-4939-2895-8_7
14. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996; 335(25): 1897–1905. doi:10.1056/nejm199612193352507
15. Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, et al. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 2001; 360(Pt 1): 143–150. doi:10.1042/0264-6021:3600143
16. Mitsui T, Azuma H, Nagasawa M, Iuchi T, Akaike M, Odomi M, et al. Chronic corticosteroid administration causes mitochondrial dysfunction in skeletal muscle. J Neurol 2002; 249(8): 1004–1009. doi:10.1007/s00415-002-0774-5
17. Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, de Bock V, Dom R, Decramer M. Corticosteroid treatment and nutritional deprivation cause a different pattern of atrophy in rat diaphragm. J Appl Physiol (Bethesda, Md: 1985) 1995; 78(2): 629–637. doi:10.1152/jappl.1995.78.2.629
18. DuBois DC, Almon RR. Disuse atrophy of skeletal muscle is associated with an increase in number of glucocorticoid receptors. Endocrinology 1980; 107(5): 1649–1651. doi:10.1210/endo-107-5-1649
19. Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 2011; 13(2): 170–182. doi:10.1016/j.cmet.2011.01.001
20. Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD. A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab 2012; 302(10): E1210–1220. doi:10.1152/ajpendo.00512.2011
21. Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C. Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 2009; 378(3): 668–672. doi:10.1016/j.bbrc.2008.11.123
22. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno, A et al. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 2009; 29(17): 4798–4811. doi:10.1128/mcb.01347-08
23. Cho JE, Fournier M, Da X, Lewis MI. Time course expression of Foxo transcription factors in skeletal muscle following corticosteroid administration. J Appl Physiol (Bethesda, Md: 1985) 2010; 108(1): 137–145. doi:10.1152/japplphysiol.00704.2009
24. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274–293. doi:10.1016/j.cell.2012.03.017
25. Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW. GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 2002; 283(2): C545–551. doi:10.1152/ajpcell.00049.2002
26. Yang H, Menconi MJ, Wei W, Petkova V, Hasselgren PO. Dexamethasone upregulates the expression of the nuclear cofactor p300 and its interaction with C/EBPbeta in cultured myotubes. J Cell Biochem 2005; 94(5): 1058–1067. doi:10.1002/jcb.20371
27. Yang H, Wei W, Menconi M, Hasselgren PO. Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT dependent. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R337–334. doi:10.1152/ajpregu.00230.2006
28. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 2003; 285(2): E363–371. doi:10.1152/ajpendo.00487.2002
29. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. Journal Cell Biol 2003; 162(6): 1135–1147. doi:10.1083/jcb.200207056
30. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 2007; 148(1): 452–460. doi:10.1210/en.2006-0539
31. van Balkom RH, van der Heijden HF, van Herwaarden CL, Dekhuijzen PN. Corticosteroid-induced myopathy of the respiratory muscles. Neth J Med 1994; 45(3): 114–122.
32. Zochodne D. Myopathies in the intensive care unit. Can J Neurol Sci 1998; 25(1): S40–42.
33. Guis S, Mattei JP, Liote F. Drug-induced and toxic myopathies. Best practice & research Clinical Rheumatol 2003; 17(6): 877–907. doi:10.1016/j.berh.2003.11.002
34. Alshekhlee A, Kaminski HJ, Ruff RL. Neuromuscular manifestations of endocrine disorders. Neurol Clin 2002; 20(1): 35–58, v–vi.
35. Askari A, Vignos PJ, Jr., Moskowitz RW. Steroid myopathy in connective tissue disease. Am J Med 1976; 61(4): 485–492.
36. Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol 1985; 76(2 Pt 1): 234–242.
37. MacFarlane IA, Rosenthal FD. Severe myopathy after status asthmaticus. Lancet (London, England) 1977; 2(8038): 615. doi:10.1016/s0140-6736(77)91471-4
38. Bednařík J. Toxické a lékové myopatie. Neurol. praxi 2004; 7(3): 146–149.
39. Lacomis D, Giuliani MJ, Van Cott A, Kramer DJ. Acute myopathy of intensive care: clinical, electromyographic, and pathological aspects. Ann Neurol 1996; 40(4): 645–654. doi:10.1002/ana.410400415
40. de Letter MA, Schmitz PI, Visser LH, Verheul FA, Schellens RL, Op de Coul DA, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med 2001; 29(12): 2281–2286. doi:10.1097/00003246-200112000-00008.
41. Afifi AK, Bergman RA, Harvey JC. Steroid myopathy. Clinical, histologic and cytologic observations. Johns Hopkins Med J 1968; 123(4): 158–173.
42. Ruff RL, Weissmann J. Endocrine myopathies. Neurol Clin 1988; 6(3): 575–592.
43. Lovitt S, Marden FA, Gundogdu B, Ostrowski ML. MRI in myopathy. Neurol Clin 2004; 22(3): 509–538, v. doi:10.1016/j.ncl.2004.03.008.
44. Minetto MA, Caresio C, Salvi M, D’Angelo V, Gorji NE, Molinari F, et al. Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in Cushing’s disease. J Endocrinol Investigation 2018. doi:10.1007/s40618-018-0979-9
45. Szczesny P, Swierkocka K, Olesinska M. Differential diagnosis of idiopathic inflammatory myopathies in adults – the first step when approaching a patient with muscle weakness. Reumatologia 2018; 56(5): 307–315. doi:10.5114/reum.2018.79502
46. Ambler Z. Zánětlivé myopatie. Neurol. praxi 2004; 7(3): 150–154.
47. Schakman O, Gilson H, de Coninck V, Lause P, Verniers J, Havaux X, et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology 2005; 146(4): 1789–1797. doi:10.1210/en.2004-1594
48. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. The Journal of nutrition. 2006; 136(1 Suppl): 227–231s. doi:10.1093/jn/136.1.227S
49. Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutrition 2006; 136(1 Suppl): 234–236s. doi:10.1093/jn/136.1.234S
50. Hickson RC, Czerwinski SM, Wegrzyn LE. Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. Am J Physiol 1995; 268(4 Pt 1): E730–734. doi:10.1152/ajpendo.1995.268.4.E730.
51. Salehian B, Mahabadi V, Bilas J, Taylor WE, Ma K. The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression. Metabolism: clinical and experimental 2006; 55(9): 1239–1247. doi:10.1016/j.metabol.2006.05.009
52. Pellegrino MA, D’Antona G, Bortolotto S, Boschi F, Pastoris O, Bottinelli R, et al. Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Experimental Physiol 2004; 89(1): 89–100.
53. Wu Y, Zhao W, Zhao J, Pan J, Wu Q, Zhang Y, et al. Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology 2007; 148(6): 2984–2993. doi:10.1210/en.2006-1653
Labels
Dermatology & STDs Paediatric rheumatology RheumatologyArticle was published in
Czech Rheumatology
2019 Issue 3
Most read in this issue
- Chronic recurrent multifocal osteomyelitis (CRMO) in childhood – review and original results
- Granulomatosis with polyangiitis: news in diagnosis and treatment
- Steroid myopathy
- Prenatal diagnosis of cardiac manifestation associated with lupus neonatorum?