#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Acyl‑ CoA Binding Domain Containing 3(ACBD3) protein v lidských kožních fibroblastech pacientů s Huntingtonovou chorobou


Authors: H. Kratochvíľová 1;  M. Rodinova 1;  J. Sladkova 1;  J. Klempir 2;  I. Liskova 2,3;  J. Motlik 3;  J. Zeman 1;  H. Hansíková 1;  M. Tesarova 1
Authors‘ workplace: Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic 1;  Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic 2;  Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, v. v. i., Libechov, Czech Republic 3
Published in: Cesk Slov Neurol N 2015; 78/111(Supplementum 2): 34-38
doi: https://doi.org/10.14735/amcsnn20152S34

Overview

Huntingtonova choroba (HD) je autozomálně dominantní neurodegenerativní onemocnění způsobené zvýšením počtu polyglutaminových repetic (> 35 repetic) v genu pro protein huntingtin. HD je charakteristická pomalými progresivními změnami pohybového aparátu a osobnosti, kdy tyto změny jsou často doprovázeny ztrátou tělesné hmotnosti. Do dnešního dne není znám přesný mechanizmus patofyziologie choroby. Poruchy pohybových funkcí reflektují masivní poškození specifických částí mozku (striatum), které bylo popsáno u pacientů s HD. V roce 2013 Sbodio et al [1] popsali zvýšené množství proteinu Acyl‑ CoA binding domain containing 3 (ACBD3) ve striatu HD pacientů. Protein ACBD3 hraje nezastupitelnou roli v mnoha buněčných procesech, a to především díky interakci s různými vazebnými partnery. ACBD3 je esenciální při neuronálním dělení, neurodegeneraci, udržení lipidové homeostáze, stresové odpovědi, virové replikaci, apoptóze, udržení struktury golgiho komplexu. V této práci jsme prokázali nepřítomnost proteinu ACBD3 v mitochondriích v lidských kožních fibroblastech a navíc jsme potvrdili, že změny celkové hladiny proteinu ACBD3 ve fibroblastech HD pacientů nejsou konzistentní.

Klíčová slova:
Huntingtonova choroba – Acyl-CoA binding domain containing 3 protein – lidské kožní fibroblasty – buněčná lokalizace

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.


Sources

1. Sbodio JI, Paul BD, Machamer CE, Snyder SH. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington‘s disease. Cell Rep 2013; 4(5): 890– 897. doi: 10.1016/ j.celrep.2013.08.001.

2. Roos RA. Huntington‘s disease: a clinical review. Orphanet J Rare Dis 2010; 5: 40. doi: 10.1186/ 1750‑ 1172‑ 5‑ 40.

3. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington‘s disease. Physiol Rev 2010; 90(3): 905– 981. doi: 10.1152/ physrev.00041.2009.

4. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington‘s disease. Nat Genet 1993; 4(4): 398– 403.

5. Squitieri F, Falleni A, Cannella M, Orobello S, Fulceri F, Lenzi P et al. Abnormal morphology of peripheral cell tissues from patients with Huntington disease. J Neural Transm 2010; 117(1): 77– 83. doi: 10.1007/ s00702‑ 009‑ 0328‑ 4.

6. Björkqvist M, Fex M, Renström E, Wierup N, Petersén A,Gil J et al. The R6/ 2 transgenic mouse model of Huntington‘s disease develops diabetes due to deficient beta‑cell mass and exocytosis. Hum Mol Genet 2005; 14(5): 565– 574.

7. Nasir J, Floresco SB, O‘Kusky JR, Diewert VM, Richman JM,Zeisler J et al. Targeted disruption of the Huntington‘s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995; 81(5): 811– 823.

8. Li L, Murphy TH, Hayden MR, Raymond LA. Enhanced striatal NR2B‑ containing N‑ methyl‑ D‑ aspartate receptor‑ mediated synaptic currents in a mouse model of Huntington‘s disease. J Neurophysiol 2004; 92(5): 2738– 2746.

9. MacDonald ME, Barnes G, Srinidhi J, Duyao MP, Ambrose CM, Myers RH et al. Gametic but not somatic instability of CAG repeat length in Huntington‘s disease. J Med Genet 1993; 30(12): 982– 986.

10. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95(1): 55– 66.

11. Milakovic T, Quintanilla RA, Johnson GV. Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J Biol Chem 2006; 281(46): 34785– 34795.

12. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ et al. Early mitochondrial calcium defects in Huntington‘s disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5(8): 731– 736.

13. Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR et al. Potentiation of NMDA receptor‑ mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington‘s disease. Mol Cell Neurosci 2004; 25(3): 469– 479.

14. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC,Muqit MM et al. Oxidative damage and metabolic dysfunction in Huntington‘s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997; 41(5): 646– 653.

15. Gu M, Gash MT, Mann VM, Javoy‑ Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington‘s disease caudate nucleus. Ann Neurol 1996; 39(3): 385– 389.

16. Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005; 14(19): 2871– 2880.

17. Petrasch‑ Parwez E, Nguyen HP, Löbbecke‑ Schumacher M, Habbes HW, Wieczorek S, Riess O et al. Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington‘s disease. J Comp Neurol 2007; 501(5): 716– 730.

18. Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S et al. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 2014; 17(6): 822– 831. doi: 10.1038/ nn.3721.

19. Fan J, Liu J, Culty M, Papadopoulos V. Acyl‑ coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res 2010; 49(3): 218– 234. doi: 10.1016/ j.plipres.2009.12.003.

20. Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE,Papadopoulos V et al. NMDA receptor‑ nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras 1. Neuron 2006; 51(4): 431– 440.

21. Chen Y, Bang S, Park S, Shi H, Kim SF. Acyl‑ CoA‑binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP‑ ribose) polymerase 1. Biochem J 2015; 469(2): 189– 198. doi: 10.1042/ BJ20141487.

22. Liu J, Li H, Papadopoulos V. PAP7, a PBR/ PKA‑ RIalpha‑-associated protein: a new element in the relay of the hormonal induction of steroidogenesis. J Steroid Biochem Mol Biol 2003; 85(2– 5): 275– 283.

23. Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 2013; 379(1– 2): 62– 73. doi: 10.1016/ j.mce.2013.04.014.

24. Greninger AL, Knudsen GM, Betegon M, Burlingame AL,DeRisi JL. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. MBio 2013; 4(2): e00098- 13. doi: 10.1128/ mBio.00098‑ 13.

25. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab 2012; 26(6): 771– 790. doi: 10.1016/ j.beem.2012.05.002.

26. Fan J, Papadopoulos V. Evolutionary origin of the mitochondrial cholesterol transport machinery reveals a universal mechanism of steroid hormone biosynthesis in animals. PLoS One 2013; 8(10): 76701. doi: 10.1371/ journal.pone.0076701.

27. Li H, Degenhardt B, Tobin D, Yao ZX, Tasken K, Papadopoulos V. Identification, localization, and function in steroidogenesis of PAP7: a peripheral‑type benzodiazepine receptor‑  and PKA (RIalpha)‑associated protein. Mol Endocrinol 2001; 15(12): 2211– 2228.

28. Chen Y, Patel V, Bang S, Cohen N, Millar J, Kim SF. Maturation and activity of sterol regulatory element binding protein 1 is inhibited by acyl‑ CoA binding domain containing 3. PLoS One 2012; 7(11): e49906. doi: 10.1371/ journal.pone.0049906.

29. Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N, Ikehara Y. Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin. J Biol Chem 2001; 276(48): 45298– 45306.

30. Shinoda Y, Fujita K, Saito S, Matsui H, Kanto Y, Nagaura Y et al. Acyl‑ CoA binding domain containing 3(ACBD3) recruits the protein phosphatase PPM1L to ER‑ Golgi membrane contact sites. FEBS Lett 2012; 586(19): 3024– 3029. doi: 10.1016/ j.febslet.2012.06.050.

31. Zhou Y, Atkins JB, Rompani SB, Bancescu DL, Petersen PH, Tang H et al. The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell 2007; 129(1): 163– 178.

32. Bai P, Csóka B. New route for the activation of poly(ADP‑ ribose) polymerase‑ 1: a passage that links poly(ADP‑ ribose) polymerase‑ 1 to lipotoxicity? Biochem J 2015; 469(2): e9– e11. doi: 10.1042/ BJ20150598.

33. Choi BR, Bang S, Chen Y, Cheah JH, Kim SF. PKA modulates iron trafficking in the striatum via small GTPase, Rhes. Neuroscience 2013; 253: 214– 220. doi: 10.1016/ j.neuroscience.2013.08.043.

34. Kratochvilova H, Rodinova H, Stranecky V, Markova M,Vondrackova A, Sladkova J et al. Role of ACBD3 protein in mitochondrial energy metabolism. Klin Biochim Met 2015; 23(3): 148.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue Supplementum 2

2015 Issue Supplementum 2

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#