#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The value of 18F-FDG-PET testing in the management of esophageal and gastroesophageal junction adenocarcinoma – review


Authors: M. Zemanová 1;  R. Obermannová 2,3;  T. Haruštiak 4
Authors‘ workplace: Onkologická klinika 1. LF UK a VFN v Praze, Praha 1;  MOÚ Brno 2;  LF MU Brno 3;  III. chirurgická klinika 1. LF UK a FN Motol, Praha 4
Published in: Klin Onkol 2021; 34(2): 113-119
Category: Review
doi: https://doi.org/10.48095/ccko2021113

Overview

Background: Preoperative chemoradiotherapy (CRT) and perioperative chemotherapy (CHMT) are a standard of care for distal esophageal and gastroesophageal junction adenocarcinomas. PET/CT using 18F-fluorodeoxyglucose (18F-FDG-PET/CT) is one of the basic staging examinations with a certain prognostic significance and has recently been studied for the possibility of showing prognostic or predictive results suitable for the individualization of treatment strategy. Purpose: The aim of this review is to map the role of 18-FDG-PET/CT in predicting the response to CHMT and CRT, which could be a starting point for personalized treatment. Content: The change in metabolic activity in the maximum standardized uptake value is most often used to quantify the treatment response; total lesion glycolysis is a volumetric parameter. A method for standardizing measurements was offered in the PERCIST system. Several studies have been published showing that the decrease in metabolic activity after chemotherapy correlates with a surrogate measure of the treatment outcome, which is the degree of tumor regression in the resected tissue, but also with survival or time to progression. The cut-off value separating sensitive and resistant tumors varied from 33 to 78%, the measurement took place either at the end of neoadjuvant treatment or „early“, about 2 weeks after the first cycle of CHMT. However, this value has not yet been validated and the parameters of sensitivity, specificity and negative and positive predictive values for the prediction of treatment outcome fluctuated significantly. In the case of preoperative CRT, PET/CT could not predict the complete response to the treatment with satisfactory accuracy. Studies using early metabolic response to change the treatment strategies in non-responders have not yet shown whether changing the treatment in patients without an early metabolic response to CHMT will improve survival. In the case of randomization, a standard arm with a continuation of the original CHMT was never used. Conclusion: Evaluation of an early PET-based response has the potential to modify the treatment in patients who have not demonstrated an early response to CHMT. However, this is not an approach suitable for routine practice outside of clinical trials. So far, it seems possible to use an early metabolic response for small, exploratory studies evaluating new agents and their combinations in the preoperative treatment of localized esophageal cancer or gastroesophageal junction cancer.

Keywords:

gastroesophageal junction adenocarcinoma – esophageal adenocarcinoma – positron emission tomography-computed tomography (PET/CT) – personalized therapy


Sources

1. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (6): 394–424. doi: 10.3322/caac.21492.

2. Epidemiologie zhoubných nádorů v České republice. [online]. Dostupné z: http: //www.svod.cz.

3. Cowie A, Noble F, Underwood T. Strategies to improve outcomes in esophageal adenocarcinoma. Expert Rev Anticancer Ther 2014; 14 (6): 677–687. doi: 10.1586/14737140.2014.895668.

4. Dušek L, Pavlík T, Májek O et al. Estimating cancer incidence, prevalence, and the number of cancer patients treated with antitumor therapy in 2015 and 2020 – analysis of the Czech National Cancer Registry. Klin Onkol 2015; 28 (1): 30–43. doi: 10.14735/amko201530.

5. Sjoquist KM, Burmeister BH, Smithers BM et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol 2011; 12 (7): 681–692. doi: 10.1016/S1470-2045 (11) 70142-5.

6. Petrelli F, Ghidini M, Barni S et al. Neoadjuvant chemo­radiotherapy or chemotherapy for gastroesophageal junction adenocarcinoma: a systematic review and meta-analysis. Gastric Cancer 2019; 22 (2): 245–254. doi: 10.1007/s10120-018-0901-3.

7. Cunningham D, Allum WH, Stenning SP et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006; 355 (1): 11–20. doi: 10.1056/NEJMoa055531.

8. Al-Batran SE, Homann N, Pauligk C et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019; 393 (10184): 1948–1957. doi: 10.1016/S0140-6736 (18) 32557-1.

9. van Hagen P, Hulshof MC, van Lanschot JJ et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 2012; 366 (22): 2074–2084. doi: 10.1056/NEJMoa1112088.

10. Conroy T, Galais MP, Raoul JL et al. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE5/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol 2014; 15 (3): 305–314. doi: 10.1016/S1470-2045 (14) 70028-2.

11. Blencowe NS, Whistance RN, Strong S et al. Evaluating the role of fluorodeoxyglucose positron emission tomography-computed tomography in multi-disciplinary team recommendations for oesophago-gastric cancer. Br J Cancer 2013; 109 (6): 1445–1450. doi: 10.1038/bjc.213.478.

12. Rizk N, Downey RJ, Akhurst T et al. Preoperative 18[F]-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg 2006; 81 (3): 1076–1081. doi: 10.1016/j.athoracsur.2005.09.063.

13. Hyun SH, Choi JY, Shim YM et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010; 17 (1): 115–122. doi: 10.1245/s10434-009-0719-7.

14. Reynolds JV, Muldoon C, Hollywood D et al. Long-term outcomes following neoadjuvant chemoradiotherapy for esophageal cancer. Ann Surg 2007; 245 (5): 707–716. doi: 10.1097/01.sla.0000254367.15810.38.

15. Langer R, Ott K, Feith M et al. Prognostic significance of histopathological tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. Mod Pathol 2009; 22 (12): 1555–1563. doi: 10.1038/modpathol.2009.123.

16. Findlay JM, Dickson E, Fiorani C et al. Temporal validation of metabolic nodal response of esophageal cancer to neoadjuvant chemotherapy as an independent predictor of unresectable disease, survival, and recurrence. Eur Radiol 2019; 29 (12): 6717–6727. doi: 10.1007/s00330-019-06310-9.

17. Wahl RL, Jacene H, Kasamon Y et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50 (Suppl 1): 122S–150S. doi: 10.2967/jnumed.108.057307.

18. Elimova E, Wang X, Etchebehere E et al. 18-fluorodeoxy-glucose positron emission computed tomography as predictive of response after chemoradiation in oesophageal cancer patients. Eur J Cancer 2015; 51 (17): 2545–2552. doi: 10.1016/j.ejca.2015.07.044.

19. Harada K, Kaya MD, Lopez A et al. Personalized therapy based on image for esophageal or gastroesophageal junction adenocarcinoma. Ann Transl Med 2018; 6 (4): 80. doi: 10.21037/atm.2017.10.28.

20. Harustiak T, Zemanova M, Fencl P et al. [18F]Fluorodeoxyglucose PET/CT and prediction of histopathological response to neoadjuvant chemotherapy for adenocarcinoma of the oesophagus and oesophagogastric junction. Br J Surg 2018; 105 (4): 419–428. doi: 10.1002/bjs.10712.

21. Al-Batran SE, Hofheinz RD, Pauligk C et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol 2016; 17 (12): 1697–1708. doi: 10.1016/S1470-2045 (16) 30531-9.

22. Weber WA, Ott K, Becker K et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001; 19 (12): 3058–3065. doi: 10.1200/JCO.2001.19.12.3058.

23. Ott K, Weber WA, Lordick F et al. Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 2006; 24 (29): 4692–4698. doi: 10.1200/JCO.2006.06.7801.

24. Wieder HA, Ott K, Lordick F et al. Prediction of tumor response by FDG-PET: comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction. Eur J Nucl Med Mol Imaging 2007; 34 (12): 1925–1932. doi: 10.1007/s00259-007-0521-3.

25. Kauppi JT, Oksala N, Salo JA et al. Locally advanced esophageal adenocarcinoma: response to neoadjuvant chemotherapy and survival predicted by [18F]FDGPET/CT. Acta Oncol 2012; 51 (5): 636–644. doi: 10.3109/0284186X.2011.643822.

26. Port JL, Lee PC, Korst RJ et al. Positron emission tomographic scanning predicts survival after induction chemotherapy for esophageal carcinoma. Ann Thorac Surg 2007; 84 (2): 393–400. doi: 10.1016/j.athoracsur.2007.03.094.

27. Lordick F, Ott K, Krause BJ et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 2007; 8 (9): 797–805. doi: 10.1016/S1470-2045 (07) 70244-9.

28. Findlay JM, Bradley KM, Wang LM et al. Predicting pathologic response of esophageal cancer to neoadjuvant chemotherapy: the implications of metabolic nodal response for personalized therapy. J Nucl Med 2017; 58 (2): 266–275. doi: 10.2967/jnumed.116.176313.

29. Mandard AM, Dalibard F, Mandard JC et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994; 73 (11): 2680–2686. doi: 10.1002/1097-0142 (19940601) 73: 11<2680: aid-cncr2820731105>3.0.co; 2-c.

30. Hernandez JM, Beylergil V, Goldman DA et al. Post-treatment/pre-operative PET response is not an independent predictor of outcomes for patients with gastric and GEJ adenocarcinoma. Ann Surg 2018; 267 (5): 898–904. doi: 10.1097/SLA.0000000000002306.

31. Heneghan HM, Donohoe C, Elliot J et al. Can CT-PET and endoscopic assessment post-neoadjuvant chemoradiotherapy predict residual disease in esophageal cancer? Ann Surg 2016; 264 (5): 831–838. doi: 10.1097/SLA.0000000000001902.

32. Elliott JA, O‘Farrell NJ, King S et al. Value of CT-PET after neoadjuvant chemoradiation in the prediction of histological tumour regression, nodal status and survival in oesophageal adenocarcinoma. Br J Surg 2014; 101 (13): 1702–1711. doi: 10.1002/bjs.9670.

33. de Gouw DJ, Klarenbeek BR, Driessen M et al. Detecting pathological complete response in esophageal cancer after neoadjuvant therapy based on imaging techniques: a dia­gnostic systematic review and meta-analysis. J Thorac Oncol 2019; 14 (7): 1156–1171. doi: 10.1016/j.jtho.2019.04.004.

34. van Rossum PS, Fried DV, Zhang L et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer. J Nucl Med 2016; 57 (5): 691–700. doi: 10.2967/jnumed.115.163766.

35. Roedl JB, Colen RR, Holalkere NS et al. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol 2008; 89 (3): 278–286. doi: 10.1016/j.radonc.2008.06.014.

36. Tamandl D, Gore RM, Fueger B et al. Change in volume parameters induced by neoadjuvant chemotherapy provide accurate prediction of overall survival after resection in patients with oesophageal cancer. Eur Radiol 2016; 26 (2): 311–321. doi: 10.1007/s00330-015-3860-7.

37. zum Büschenfelde CM, Herrmann K, Schuster T et al. (18) F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 2011; 52 (8): 1189–1196. doi: 10.2967/jnumed.110.085803.

38. Ilson DH, Minsky BD, Ku GY et al. Phase 2 trial of induction and concurrent chemoradiotherapy with weekly irinotecan and cisplatin followed by surgery for esophageal cancer. Cancer 2012; 118 (11): 2820–2827. doi: 10.1002/cncr.26591.

39. Goodman KA, Niedzwiecki D, Hall N et al. Initial results of CALGB 80803 (Alliance): A randomized phase II trial of PET scan-directed combined modality therapy for esophageal cancer. J Clin Oncol 2017; 35 (Suppl 4): abstract 1. doi: 10.1200/JCO.2017.35.4_suppl.1.

40. Goodman KA, Hall N, Bekaii-Saab TN et al. Survival outcomes from CALGB 80803 (Alliance): A randomized phase II trial of PET scan-directed combined modality therapy for esophageal cancer. J Clin Oncol 2018; 36 (Suppl 15): abstract 4012. doi: 10.1200/JCO.2018.36.15_suppl.4012.

41. Greally M, Chou JF, Molena D, et al. Positron-emission tomography scan-directed chemoradiation for esophageal squamous cell carcinoma: no benefit for a change in chemotherapy in positron-emission tomography nonresponders. J Thorac Oncol 2019; 14 (3): 540–546. doi: 10.1016/j.jtho.2018.10.152.

42. Barbour AP, Walpole ET, Mai GT et al. Preoperative cisplatin, fluorouracil, and docetaxel with or without radiotherapy after poor early response to cisplatin and fluorouracil for resectable oesophageal adenocarcinoma (AGITG DOCTOR): results from a multicentre, randomised controlled phase II trial. Ann Oncol 2020; 31 (2): 236–245. doi: 10.1016/j.annonc.2019.10.019.

43. Borggreve AS, Goense L, van Rossum PS et al. Preoperative prediction of pathologic response to neoadjuvant chemoradiotherapy in patients with esophageal cancer using 18F-FDG PET/CT and DW-MRI: a prospective multicenter study. Int J Radiat Oncol Biol Phys 2020; 106 (5): 998–1009. doi: 10.1016/j.ijrobp.2019.12.038.

44. Gerbaudo VH, Killoran JH, Kim CK et al. Pilot study of serial FLT and FDG-PET/CT imaging to monitor response to neoadjuvant chemoradiotherapy of esophageal adenocarcinoma: correlation with histopathologic response. Ann Nucl Med 2018; 32 (3): 165–174. doi: 10.1007/s12149-018-1229-0.

45. Kovaříková A, Héžová R, Srovnal J et al. Role mikroRNA v molekulární patologii karcinomu jícnu a jejich potenciální využití v klinické onkologii. Klin Onkol 2014; 27 (2): 87–96. doi: 10.14735/amko201487.

46. van Velzen MJ, Derks S, van Grieken NC et al. MSI as a predictive factor for treatment outcome of gastroesophageal adenocarcinoma. Cancer Treat Rev 2020; 86: 102024. doi: 10.1016/j.ctrv.2020.102024.

47. Parikh AR, He Y, Hong TS et al. Analysis of DNA damage response gene alterations and tumor mutational burden across 17,486 tubular gastrointestinal carcinomas: implications for therapy. Oncologist 2019; 24 (10): 1340–1347. doi: 10.1634/theoncologist.2019-0034.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 2

2021 Issue 2

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#