Update role Lp (a) při určení kardiovaskulárního rizika a možnosti jeho ovlivnění
:
Zlatohlávek L.
:
3. interní klinika 1. LF UK a VFN, Praha
:
Kardiol Rev Int Med 2019, 21(2): 68-69
Kardiovaskulární onemocnění jsou nejčastější příčinou mortality a morbidity. Kromě „klasických“ rizikových faktorů aterosklerózy jsou známy další rizikové faktory aterosklerózy. Mezi ně patří lipoprotein (a) – Lp (a). Za rizikové hodnoty jsou považovány hladiny přes 80. percentil, tj. 50 mg/ dl. Lp (a) se skládá z apoliporoteinu (a) a LDL částice (apolipoprotein B100). Za rizikovou je zodpovědná nejen zvýšená hladina, ale i velikost Lp (a). Pravděpodobně rizikové jsou vysoké hladiny krátkých izoforem, naopak protektivní mohou být vysoké hladiny dlouhých izoforem. Farmakologicky je dnes možno hladiny Lp (a) ovlivnit PCKS9 inhibitory a pravděpodobně novými léky v klinických studiích.
Klíčová slova:
ateroskleróza – terapie – lipoprotein (a)
Úvod
Kardiovaskulární onemocnění (KVO) jsou nejčastější příčinou mortality a morbidity. Jistě nejsou v dnešní době již zpochybnitelné jasné rizikové faktory aterosklerózy, ať neovlivnitelné (pohlaví, věk, genetická výbava, aj.) nebo ovlivnitelné (dyslipidemie, kouření, nízká pohybová aktivita, obezita, diabetes mellitus, arteriální hypertenze aj.). Nicméně u některých pacientů se stejnými rizikovými faktory je manifestace aterosklerózy různorodá (časností manifestace, rozsahem a místem postižení, aj.). Proto jsou hledány stále nové rizikové faktory, které akcelerují projevy aterosklerózy. Jedním z potencionálních kandidátů je lipoprotein (a) – Lp (a), který se po objevení v 70. letech dostává zpět do světla vědeckého
zájmu.
Lp (a) je plazmatický lipoprotein tvořený z apoliporoteinu (a) – apo (a) a LDL částice (apolipoprotein B100 – apoB-100). Dle klinických studií a studií na zvířecích modelech jsou zvýšené hladiny Lp (a) spojené se zvýšeným rizikem aterosklerózy a stenózy aortální chlopně. Za rizikové hodnoty jsou považovány hladiny přes 35 mg/ dl, resp. 80. percentil, tj. 50 mg/ dl. Princip jakým se Lp (a) uplatňuje v procesu aterogeneze není zcela znám. Roli hraje pravděpodobně jeho funkce při reparaci a hojení ran, kdy Lp (a) „přináší“ do poškozeného endotelu lipidy jako substrátu k hojení, čímž paradoxně přispívá k ukládání dalších lipidů do ateroslerotického plátu. Další jeho jistě významnou rolí je vysoká homologie s plazminogenem. Jeho vazbou na receptory pro plazminogen inhibuje jako afunkční molekula fibrinolýzu a tím napomáhá
trombogenezi.
Naopak překvapivě vysoké hladiny Lp (a) ve stáří jsou asociovány s dlouhověkostí. Vysvětlení tohoto faktu je možno hledat právě v jeho roli při reparaci tkání, hojení ran a protinádorovém působení.
Hladina a velikost Lp (a) jsou u člověka velmi variabilní a jsou dány množstvím syntetizovaného apo (a). Gen pro Lp (a) je lokalizován na 6. chromozómu. Hladina Lp (a) je z více jak 95 % dány geneticky a poměrně stabilní po celou dobu života., Mohou ovlivňovat následující faktory – pohlaví, některé hormony a léky. Hladina není prakticky ovlivnitelná dietou.
Lp (a) je přítomen u člověka, primátů a ježka evropského, jeho fyziologické a patofyziologické funkce nebyly stále jasně objasněny. Lp (a) je jeden z dalších potenciálních kandidátů ať aditivního či samostatného rizikového faktoru aterosklerózy.
Lipoprotein (a)
První, kdo nevědomky objevil Lp (a), byl prof. Berg v roce 1963. Objevil v plazmě antigen, který přiřadil do oblasti lipoproteinů [1]. Původně byl tento antigen spojován s LDL (lipoprotein s nízkou hustotou) částicí, ale Berg ukázal, že tomu tak není, že se jedná o antigen reprezentující odlišnou lipoproteinovou částici a označil ji jako Lp (a) [2]. Po zveřejnění výsledků prof. Berga objevil prof. Seeger [3] pomocí elektroforézy lipoprotein, o kterém se domníval, že se jedná o genetickou variantu
β-migrující LDL. Následně bylo dokázáno, že se jedná o nový lipoprotein pohybující se v oblasti pre β [4]. V roce 1970 popsal prof. Rider lipoprotein, který se sice elektroforeticky choval jako lipoproteiny o velmi nízké hustotě (VLDL), ale ultracentrifugací byl porovnatelný s LDL. Všechny práce popisovaly ve skutečnosti Lp (a). Název Lp „(a)“ vznikl jako označení lipoproteinu s antigenními vlastnostmi.
Lp (a) má zhruba sférický tvar, o průměru 21 nm [5]. Skládá se z "low-density" jádra obaleného "high-density" pláštěm [6]. Stejně jako LDL částice obsahuje apoB-100 a dále druhý, disulfidicky vázaný polypeptid-apolipoprotein (a) [7]. Apo (a) je vysoce glykosylovaný, hydrofilní protein s velmi malou afinitou k lipidům, který vykazuje rozmanitou délkovou variabilitu [8]. Sestává se z domén, tzv. kringlů (kringl = z dánštiny preclík) a serin-proteázové domény. Kringly mají strukturu trojité smyčky, která je stabilizována třemi disulfidickými vazbami.
Kringly se vyskytují také v plazminogenu, protrombinu, tkáňovém aktivátoru plazminogenu a dalších proteázách podílejících se na koagulaci a fibrinolýze. Lp (a) obsahuje 11 variant kringlů [9]. Poslední z nich je z 85 % homologní s kringlem V. plazminogenu. Zbývajících deset je podobných, ale nikoli identických, s kringlem IV. plazminogenu. Těchto deset je označeno jako kringl IV typy 1–10. Kringly IV typ 1 a 3–10 jsou přítomny pouze v jedné kopii, oproti tomu typ 2 se vyskytuje v různých počtech opakování, a to 3–43× [10]. A právě tato repetice kringlu IV typ 2 udává rozdílnou velikost apo (a).
Plazminogen se díky své vlastnosti vázat lysin váže na řadu specifických substrátů [11] (např. fibrin, buněčné receptory, endotelové buňky tepen). Kringl IV typ 10 lidského apo (a) má taktéž schopnost se vázat na stejné substráty jako plazminogen, s nímž interferuje jako nefunkční proteáza, zejména při trombolýze.
Gen pro apo (a) je lokalizován na 6. chromozomu v oblasti 6q26-q27 asi 50 kb od genu pro plazminogen, se kterým sdílí asi 80% homologii. Jeho rozsáhlost je dána mnohonásobným opakováním 5,5 kb dlouhé jednotky kódující kringl IV typ 2 [12,13] objevující se v rozdílném počtu repetic. Exprese genu probíhá v jaterní buňce.
Míra exprese genu je ovlivňována jeho regulačními oblastmi, dominantně v promotorové oblasti a oblasti zesilovačů, kde se pravděpodobně uplatňují farmakologické vlivy a vlivy vnitřní regulace [14].
Metabolizmus
Množství kolujícího Lp (a) je dáno zejména množstvím produkce, nikoliv jeho degradace [15]. Lp (a) je syntetizován dominantně v játrech [16]. Určujícím faktorem hladiny Lp (a) je množství apo (a), jehož hladiny v jaterní buňce jsou individuální dle míry transkripce a stability příslušné mRNA. V endoplazmatickém retikulu každý kringl prochází sérií posttranslačních modifikací vč. formace tří disulfidických vazeb a přidání N-vázaných glykanů. Delší formy apo (a) jsou během transportu z endoplazmatického retikula déle zadržovány a mohou být degradovány proteozomy. Malé formy jsou efektivněji transportovány na místo dalšího zpracování, do Golgiho komplexu, kde dochází k dalšímu navázání na N- a O- vázaných glykanů. Nově syntetizovaný apo (a) je transportován na povrch jaterní buňky, kde je shromažďován s lipoproteiny bohatými na apo-B100. Jak bylo popsáno výše, velké formy jsou během posttranslačních úprav více náchylné k degradaci, a proto jsou spojeny s nižšími sérovými hladinami Lp (a), u malých forem je tomu naopak.
Celkem 10–25 % Lp (a) je konvertováno na LDL částice, které jsou z oběhu odstraňovány LDL-receptorem [17]. Při pokusech na tkáňových kulturách VLDL [18] receptor internalizoval Lp (a). U myší s "knockoutovaným" VLDL receptorem dochází ke zvýšení hladin Lp (a).
Ledviny se také podílí na odstranění Lp (a) z oběhu [19]. Byl zjištěn arterio-venózní gradient v hladinách Lp (a) ledvinných tepen a žil. Pacienti s renální insuficiencí mají zvýšené hladiny Lp (a). Princip jakým velké glykosylované substráty prochází do moče, není přesně znám.
Hladina Lp (a) minimálně ovlivnitelná věkem, pohlavím či dietou a jeho hladina je poměrně stabilní po celou dobu života. U žen po menopauze dochází pravděpodobně vlivem nedostatku estrogenů k vzestupu hladiny Lp (a) o 10–30 %. Estrogeny a kyselina nikotinová působí na úrovni transkripce snížením hladiny příslušné mRNA. Růstový hormon působí opačně.
Fyziologické funkce
Lp (a) je především považován za aterogenní rizikový faktor, nicméně má pravděpodobně i fyziologické funkce. Jedna z možných rolí Lp (a) je jeho úloha při reparaci a hojení ran [17].
Lp (a) vstupuje do procesu hojení po kontaktu extracelulární matrix poraněné tkáně s krevním proudem [20]. LDL část Lp (a) dodává lipidy pro reparaci tkáně. Lp (a) podporuje další influx ostatních zánětlivých buněk, např. má chemotaktický vliv na monocyty. Dle studií in vitro [21] je Lp (a) schopen fungovat jako scavenger akumulovaných a nadbytečných biologických lipidů. Pomocí repetic domény kringl IV je schopen navázat zbytky metabolizmu (vč. oxidovaných lipidů) a nabídnout je k dalšímu zpracování.
Lp (a) je přítomen v blízkosti endoteliálních buněk novotvořených cév, avšak nebyl již detekován v lézích po epiteliální regeneraci [22]. In vitro dochází vlivem Lp (a) k inhibici novotvorby cév v nádorovém procesu pravděpodobně zablokováním receptorů pro angiostatin, kterému je strukturou podobný.
Pozoruhodné jsou studie se stoletými lidmi [23] u nichž byla zjištěna spíše vyšší hladina Lp (a) než u srovnávací skupiny středního věku. Zdá se, že pokud nejsou přítomné jiné rizikové faktory aterosklerózy, Lp (a) se spíše uplatňuje v procesu hojení ran a svými možnými antineoplazmatickými vlastnostmi. Pravděpodobně ochranný, protektivní vliv mají vyšší hladiny středně dlouhých délkových variant Lp (a).
Aterogeneze
Řadou studií a pokusy in vitro bylo prokázáno, že se Lp (a) akumuluje v aterosklerotickém plátu, ale nikoli ve zdravé stěně cév. Většina prací studujících aterogenezi Lp (a) byla prováděna in vitro, kde byly sledované parametry izolované, a tudíž plně neodráží situaci in vivo.
V časné fázi tvorby plaku se Lp (a) nalézá v blízkosti endoteliálních buněk, transport je pravděpodobně zprostředkován VLDL receptory, které jsou přítomny na kapilárách a drobných cévách. Lp (a) je zachycen v lézích vazbou na komponenty extracelulární matrix. Lp (a) zde zvyšuje expresi adhezivních molekul a napomáhá chemotaxi zánětlivých buněk [25]. Výsledkem interference s plazminem dochází k snížení aktivity TGF (transformující růstový faktor) a tím ke zvýšení proliferace buněk hladké svaloviny. Lp (a) je v plaku často lokalizován v blízkosti pěnových buněk, s jejichž zbytky a dalšími látkami (např. oxidovanými lipidy) je "scavengován" do makrofágů [26]. Tím zvyšuje Lp (a) lokální depozita cholesterolu v lézích a napomáhá k rozvoji plaku. Lp (a) se dále akumuluje v blízkosti krevních destiček [27], kompetuje s plazminogenem o vazbu na fibrin a zpomaluje aktivaci tkáňového aktivátoru plazminogenu, inhibuje lokálně trombolýzu [28]. V pokročilých lézích je apo (a) predominantně lokalizován extracelulárně ve ztluštělé intimě. Lp (a) nebyl nalezen ve zdravé intimě cév, ale vždy v aterosklerózou poškozených cévách.
Lp (a) a kardiovaskulární riziko
Brzy po objevení Lp (a) se tento lipoprotein dostal do světla zájmu ve vztahu k procesu aterosklerózy. Byla provedena řada studií, hledajících vztah Lp (a) k ICHS. Vzhledem k rozdílné izolaci, skladování a chemické analýze Lp (a), i k odlišnému designu studií, počtu vyšetřených pacientů a různé statistické analýze jsou výsledky provedených klinických studií obtížně srovnatelné, ale lze říci, že Lp (a) je nezávislý rizikový faktor v rozvoji aterosklerózy, okluzi periferních tepen a stenózy aortální chlopně [29,30].
Podobné výsledky vyšly z retrospektivních a case-control studií (tab. 1). Některá věrohodná data ukazují, že zvýšené hladiny Lp (a) jsou prediktorem progrese preexistujích změn, které byly monitorovány angiograficky.
Vztah Lp (a) a cévní mozkové příhody byl studován [31] v 16 epidemiologických studiích, z jejichž závěrů nevyplynul Lp (a) jako prediktor ischemické mozkové příhody, ale může být pomocný rizikový faktor iktu u pacientů s jiným metabolickým postižením. Jisté podezření vztahu embolických příhod a Lp (a) vzhledem k "oslabené" fibrinolýze nelze opominout.
Jistě významnou a velice často v odborné literatuře citovanou rolí Lp (a) je jeho vztah k okluzivním komplikacím po různých intervenčních výkonech jako je: perkutánní transluminální koronarografická angioplastika [32], stentování koronárních tepen, kde se uplatňuje samostatně, či samozřejmě v kombinaci s ostatními rizikovými faktory. Vysvětlením těchto komplikací je zřejmě inkorporace Lp (a) do stěn tepen během novotvoření intimy po poškození zákrokem. Z provedených studií lze říci, že hladina Lp (a) přes 30 mg/ dl je rizikovým faktorem okluze, samozřejmě potencována ostatní rizikovými faktory jako jsou např.: vysoké hladiny LDL, nízké hladiny HDL.
Vzhledem k možnému negativnímu vlivu na fibrinolýzu je diskutován vztah Lp (a) k žilním trombózám [33], uzávěrům retinálních žil a placentární cirkulace jako příčině retardace růstu plodu. Nelze ale jednoznačně říci, že Lp (a) má jasný synegrický efekt spolu s dříve definovanými a známými protrombotickými prediktory.
Hladiny Lp (a) a možnosti jejich ovlivnění
Bylo provedeno mnoho studií zkoumajících vliv diety na hladinu Lp (a). Byl zkoumán vliv vysokocholesterolové diety [34], po které došlo ke zvýšení apo-B100, ale nikoliv Lp (a). Stejně tak nízkokalorická dieta ani rybí olej neměly vliv na hladinu Lp (a). U žen, po redukci váhy o 10 kg došlo k statisticky významnému poklesu Lp (a), ale nebyl pozorován efekt u žen se stejným váhovým úbytkem, které měly hladinu Lp (a) pod 30 mg/ dl.
Kyselina nikotinová byl první objevený lék ovlivňující hladinu Lp (a). U hypercholesterolemických pacientů s hladinou Lp (a) přes 30 mg/ dl došlo k poklesu Lp (a) o 36 %, avšak 45 % pacientů studii pro nežádoucí účinky nedokončilo [35]. Analog kyseliny nikotinové Acipimox v dávce 1g redukuje hladinu Lp (a) o 8 % méně než kyselina nikotinová. Snížení hladiny Lp (a) bude zřejmě způsobeno ovlivněním jeho syntézy na úrovni regulačních oblastí genu pro apo (a). Kyselina nikotinová také snižuje lipolýzu tukové tkáně, a tím dodání mastných kyselin do jater. Následkem je snížená hladina VLDL částic a vzestupu počtu VLDL receptorů, pomocí kterých je Lp (a) pravděpodobně také vychytáván. Tento druhý princip se ovšem na snížení Lp (a) podílí minimálně.
Ve dvojitě slepé, placebem kontrolované studii [36] při podávání gemfibrozilu v dávce 50 mg/ kg/ den došlo ke snížení Lp (a) o 16 %. Po podávání probukolu nebyl pozorován vliv na hladinu Lp (a).
Statiny dle většiny studií neovlivňují hladinu Lp (a) a v několika menších pozorováních došlo dokonce ke zvýšení Lp (a) [37].
Zaručenou metodou snižující hladinu Lp (a) je aferéza [38]. Princip je stejný jako při LDL-aferéze. V preventivní studii sledující restenózu po PTCA (perkutánní transluminární koronární angiografii) bylo sledováno výrazné snížení těchto příhod o více než 50 % po redukci koncentrace Lp (a) aferézou.
Prvním hormonem, se kterým byla provedena studie prokazující pozitivní vliv na Lp (a), byl analog androgenu stanozol, ale i jiné androgeny snižují hladiny Lp (a). U pacientů s karcinomem prostaty dochází po orchiektomii ke zvýšení hladin Lp (a), kdežto u pacientů léčených estrogeny dochází k poklesu Lp (a) [39]. V mnoha studiích postmenopauzálních žen bylo po podávání monoterapie estrogeny či kombinované terapie s progesteronem pozorováno snížení Lp (a). Stejný vliv byl pozorován po podávání antiestrogenu tamoxifenu.
Z ostatních hormonů zvyšuje hladinu Lp (a) např. růstový hormon, naopak dexametazon nebo adenokortikotropní hormon hladinu Lp (a) snižují. Nálezy u thyreoidních hormonů jsou rozporuplné.
Nadějnou lékovou skupinou jsou inhibitory PCSK9. Již v roce 2015 publikovaná metaanalýza 6 566 pacientů potvrdila pokles Lp (a) o 26 % po podávání této skupiny léčiv [40]. Nicméně pokles KV mortality nebyl asociován s poklesem Lp (a) v těchto metaanalýzách.
Ve studii ODYSSEY [41] s alirocumabem došlo k výraznému snížením Lp (a), bez ohledu na počáteční dávku a užívání statinů. Ve 24. týdnu došlo ke snížení Lp (a) oproti výchozím hodnotám o 23–29 % dle síly preparátu v dávce 75 či 150 mg podávaný 1× za 14 dní (všechna srovnání p < 0,0001 oproti kontrolám). Snížení bylo udržováno v průběhu sledování až do 104. týdne. Pokles Lp (a) byl nezávislý na rase, pohlaví, přítomnosti familiární hypercholesterolemie, výchozích koncentracích Lp (a) a LDL cholesterolu nebo použití statinů.
Identicky ve studii s evalocumabem [42] došlo po 48 týdnech k poklesu Lp (a) o 26,9 %. Evolocumab snížil riziko vzniku ICHS, infarktu myokardu nebo urgentní revaskularizace o 23 % u pacientů s výchozím Lp (a) > medián a o 7 % u pacientů s hodnotami ≤ medián. Tedy, evalocumab významně snížil hladiny Lp (a) a pacienti s vyššími hodnotami Lp (a) zaznamenali větší absolutní snížení Lp (a) a inklinovali k většímu koronárnímu prospěchu z inhibice PCSK9.
Další novou nadějí a úspěšnou farmakoterapii má ve svém vývoji firma Ionis Pharmaceuticals, a to preparát IONIS-APO(a)LRx podávaný 1× týdně subkutánně [43]. Jedná se o antisense oligonukleotidy RNA. Ve druhé fázi klinického zkoušení došlo dle dávky k poklesu hladiny Lp (a) od 66 do 92 %, bez významných vedlejších nežádoucích efektů. Tento preparát je nyní v dalších fázích klinického výzkumu. Antisense terapie je tedy nejen potenciálně léčebná metoda aterosklerózy, ale i vysokých hladin Lp (a).
Doporučení konsensu EAS
Dle tohoto doporučení by vzhledem k t. č. nemožnosti dostatečného farmakologického ovlivnění neměl být prováděn plošný screening Lp (a), avšak měření Lp (a) by mělo být systematicky zvažováno u osob s vysokým rizikem KVO nebo s pozitivní rodinnou anamnézou předčasné manifestace ICHS či vysokých hladin Lp (a) (tab. 2) [44]. Riziko je považováno za významné, pokud je hladina Lp (a) nad 80. percentilem, tj. nad 50 mg/ dl. U těchto pacientů by mělo dojít k překlasifikování jejich rizika a měli by být považováni za pacienty s vysokým rizikem. Vhodná volba pro pacienty s rizikem a vysokou hladinou Lp (a) je intenzivní léčba rizikových faktorů.
Závěr
Lp (a) je unikátní lipoproteinová částice jednak svou genetickou determinací, ale i strukturou. Lp (a) hraje zřejmě významnou úlohu při hojení poškozených tkání. Naopak svým působením v poškozeném endotelu zhoršuje proces aterogeneze a homologií s plazminogenem inhibuje fibrinolýzu. Na základě studií sledujících asociaci mezi zvýšenými koncentracemi Lp (a) a zvýšeným rizikem ischemické choroby lze Lp (a) považovat za samostatný rizikový faktor aterosklerózy a stenózy aortální chlopně. V léčbě zvýšených hladin Lp (a) máme omezené možnosti. Dietní intervence není úspěšná, z farmakologických prostředků snižuje hladinu Lp (a) významně kyselina nikotinová a její deriváty, které nejsou t. č. k dispozici, statiny jsou bez efektu. Novou nadějí jsou PCSK9 inhibitory a antisense apo(a) RNA terapie.
Doručeno do redakce: 29. 5. 2019
Přijato po recenzi: 6. 6. 2019
doc. MU Dr. Lukáš Zlatohlávek, Ph.D.
www.lf1.cuni.cz
Sources
1. Berg K. A new serum type system in man: the Lp sytem. Acta Pathol Microbial Scand 1963; 59: 369–382.
2. Morrisett JD, Guyton JR, Gaubatz JW et al. Lipoprotein (a): structure, metabolism and epidemiology. In: Plasma lipoproteins. Gotto AM. (ed). New Comprehensive Biochemistry. Elsevier Sci Publ 1987; 14: 129–152. doi: 10.1016/ S0167-7306(08)60198-2.
3. Seegers W, Hirschhorn K, Burnett L et al. Double beta-lipoprotein: a new genetic variant in man. Science 1965; 149(3681): 303–304. doi: 10.1126/ science.149.3681.303.
4. Dahlén G, Ericson C, Furberg C et al. Studies on an extra pre-beta lipoprotein fraction. Acta Med Scand Suppl 1972; 531: 1–29.
5. Sines J, Rothnagel R, van Heel M et al. Electron cryomycroscopy and digital image processing of Lp(a). Chem Phys Lipids 1994; 67/ 68: 81–89.
6. Marcovina SM, Morrisett JD. Structure and metabolism of lipoprotein (a). Curr Opin Lipidol 1995; 6(3): 136–145.
7. Koschinsky ML, Cote GP, Gabel B et al. Identification of the cystein residue in apolipoprotein(a) that mediates extracellular couping with apolipoprotein B-100. J Bioch Chem 1993; 268(26): 1819–19825.
8. Hixson JE, Britten ML, Manis GS et al. Apolipoprotein(a) glycoprotein isoform result from size differences in Apo(a) mRNA in baboons. J Biol Chem 1989; 264(11): 6013–6016.
9. Morrisett JD, Gaubatz JW, Knapp RD et al. Structural properties of apo (a): a major apoprotein of human lipoprotein (a). In: Lipoprotein (a). Scanu AM (ed). San Diego: Academic Press Ic. 1990: 53–74.
10. Lackner C, Cohen JC, Hobs HH. Molecular definition of the extreme size polymorphism in apolipoprotein(a). Hum Mol Genet 1993; 2(7): 933–940. doi: 10.1093/ hmg/ 2.7.933.
11. Eaton DL, Fless GM, Kohr W jet al. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proc Natl Acad Sci USA 1987; 84(10): 3224–3228. doi: 10.1073/ pnas.84.10.3224.
12. White AL, Hixson JE, Rainwater DL et al. Molecular basis for „null“ lipoprotein(a) phenotyps and influence of apolipoprotein(a) size on plasma lipoprotein(a) level in the baboon. J Biol Chem 1994; 269(12): 9060–9066.
13. Lackner C, Boerwinkle E, Leffert C et al. Molecular basis of apolipoprotein(a) isoform size heterogenity as revealed by pulsed-field gel electrophoresis. J Clin Invest 1991; 87(6): 2153–2161. doi: 10.1172/ JCI115248.
14. Boerwinkle E. Genetics of plasma lipoprotein (a) concentrations. Curr Opin Lipidology 1992; 3: 128–136.
15. Krempler F, Kostner GM, Bolzano K et al. Turnover of lipoprotein (a) in man. J Clin Invest 1980; 62(6): 1483–1490. doi: 10.1172/ JCI109813.
16. Kraft HG, Menzel HJ, Hoppichler F et al. Changes of genetics apolipoprotein phenotypes caused by liver transplantation. Implication for apolipoprotein synthesis. J Clin Invest 1989; 83(1): 137–142. doi: 10.1172/ JCI113849.
17. Hobbs HH, White AL. Lipoprotein(a): intrigues and insights. Curr Opin Lipidol 1999; 10(3): 225–236.
18. Argraves KM, Kozarsky KF, Fallon JT et al. The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J Clin Invest 1997; 100(9): 2170–2181. doi: 10.1172/ JCI119753.
19. Parra HJ, Mezdour H, Cachera C et al. Lp(a) lipoprotein in patients with chronical renal failure treated by hemodialysis. Clin Chem 1987; 33(5): 721.
20. Higazi AA, Lavi E, Bdeir K et al. Defensin stimulated the binding of lipoprotein (a) to human vascular endothelial and smooth muscle cells. Blood 1997; 89(12): 4290–4298.
21. Philips ML, Lembertas AV, Schumaker VN et al. Physical properties of recombinant apo(a) and its association with LDL to form an Lp(a)-like complex. Biochemistry 1993; 32(14): 3722–3728.
22. Yano Y, Shimokawa K, Okada Y et al. Immunolocalizacion of lp(a) in wounded tissues. J Histochem Cytochem 1997; 45(4): 559–568. doi: 10.1177/ 002215549704500408.
23. Baggio G, Donazzan S, Monti D et al. Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factor. FASEB J
1998; 12(6): 433–437. doi: 10.1096/ fasebj.12.6.433.
24. Marcovina SM, Albers JJ, Wijsman E et al. Differences in Lp(a) concentrations and apo(a) polymorphysm between black a white Americans. J Lipid Res 1996; 37(12): 2569–2585.
25. Kojima S, Harpel PC, Rifkin DB et al. Lipoprotein (a) inhibits the generation of trasforming growth factor beta: an endogenous inhibitor of smooth muscle cell migration. J Cell Biol 1991; 113(6): 1439–1445. doi: 10.1083/ jcb.113.6.1439.
26. Heberland ME, Fless GM, Scanu AM et al. Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocytemacrophages. J Biol Chem 1992; 267(6): 4143–4151.
27. Nachman RL. Thrombosis and atherogenesis: molecular connections. Blood 1992; 79(8): 1897–1906.
28. Hajjar KA, Nachman RL. The role of lipoprotein(a) in atherogenesis and thrombosis. Annu Rev Med 1996; 47: 423–442. doi: 10.1146/ annurev.med.47.1.423.
29. Cooke JP. The pathophysiology of periferal arterial disease: rational targets for drug intervention. Vasc Med 1997; 2: 227–230.
30. Seman LJ, DeLuca C, Jenner JL et al. Lipoprotein(a)-cholestrol and coronary heart disease in the Framingham Heart Study. Clin Chem 1999; 45(7): 1039–1046.
31. Milionis HJ, Winder AF, Mikhailidis DP et al. Lipoprotein(a) and stroke. J Clin Pathol 2000; 53(7): 487–496. doi: 10.1136/ jcp.53.7.487.
32. Miner SE, Hegele RA, Sparkes J et al. Homocystein, lipoproteine(a) levels and restenosis after PTCA: a prospective study. Am Heart J 2000; 140:
272–278.
33. von Depka M, Nowak-Göttl U, Eisert R et al. Increased lipoprotein (a) levels as an indipendent risk factor for venous tromboembolism. Blood 2000; 96(10): 3364–3368.
34. Angelin B. Therapy for lowering lipoprotein (a) levels. Curr Opin Lipidol 1997; 8(6): 337–341.
35. Seed M, O’Connor B, Perombelon N et al. The effect of nicotin acid and acipimox on lipoprotein (a) concentration and turnover. Atherosclerosis 1993; 101(1): 61–68.
36. Ramharack R, Spahi MA, Hicks GW et al. Gemfibrozil significantly lowers cynomolgus monkey plasma lipoprotein (a)-protein and liver apolipoprotein (a) mRNA levels. J Lipid Res 1995; 36(6): 1294–1304.
37. Galetta F, Sampietro T, Basta G et al. Effects of simvastatin on blood levels of lipoprotein (a). Minerva Med 1995; 86(7–8): 299–303.
38. Bambauer R, Schiel R, Keller HE et al. Low-density lipoprotein apheresis in the treatment of two patients with coronary heart disease and extremely elevated lipoprotein (a) levels.. Artif Organs 1996; 20(4): 340–343.
39. Henriksson P, Angelin B, Berglund L. Hormonal regulatulation of serum Lp (a) levels. Opposite effects after estrogen treatment and orchidectomy in males with prostatic carcinoma. J Clin Invest 1992; 89(4): 1166–1171. doi: 10.1172/ JCI115699.
40. Navarese EP, Kolodziejczak M, Schulze V et al. Effects of proprotein convertase subtilisin/ kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med 2015; 163(1): 40–51. doi: 10.7326/ M14-2957.
41. Gaudet D, Watts GF, Robinson JG et al. Effect of alirocumab on lipoprotein(a) over ≥1.5 years (from the Phase 3 ODYSSEY Program). Am J Cardiol 2017; 119(1): 40–46. doi: 10.1016/ j.amjcard.2016.09.010.
42. O'Donoghue ML, Fazio S, Giugliano RP et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation 2019; 139(12): 1483–1492. doi: 10.1161/ CIRCULATIONAHA.118.037184.
43. Viney NJ, van Capelleveen JC, Geary RS et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 2016; 388(10057): 2239–2253. doi: 10.1016/ S0140-6736(16)31009-1.
44. Catapano AL, Graham I, De Backer G et al. 2016 ESC/ EAS Guidelines for the management of dyslipidaemias. Eur Heart J 2016; 37(39): 2999–3058. doi: 10.1093/ eurheartj/ ehw272.
Labels
Paediatric cardiology Internal medicine Cardiac surgery CardiologyArticle was published in
Cardiology Review
2019 Issue 2
Most read in this issue
- Beta-blockers in cardiovascular diseases – Pros and Cons
- Update of the role of Lp(a) in determination of the CV risk and methods of influencing it
- Mechanical circulatory supports – basic principles and clinical evidence
- News about familial hypercholesterolaemia for cardiologists