Lectins from Eichornia crassipens and Lemna minor may be involved in Vibrio Cholerae El Tor adhesion
Autoři:
E. Córdoba-Aguilar 1; R. Coutiño-Rodríguez 1; H. Giles-Ríos 1; P. Hernández-Cruz 2; Mosqueda-Aguilar A(✝); P. Ríos-Cortés 1; H. Montero 1
Působiště autorů:
Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
1; Facultad de Medicina, Universidad de Oaxaca, Oaxaca, México
2
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. 67, 2018, č. 1, s. 24-30
Kategorie:
Původní práce
Souhrn
Vibrio cholerae (Vc) has been isolated from roots of aquatic plants during epidemic or interepidemic periods. It has been suggested that the lectins from the roots of aquatic plants play a role as reservoirs of Vc. In this paper, we evaluated the activity of lectins from Lemna minor and Eichornia crassipens plants as potential mediators of the Vc strain El Tor (Vct). We found that Lemna minor extract showed high specificity towards blood groups O and B. Eichornia crassipens extract showed high specificity towards blood group A and O. Sugar competition experiments demonstrated that Lemna minor extract showed a high recognition to Neu5Ac (acid N acetyl neuraminic or sialic acid) and GlcNAc (N-acetyl D glucoseamine) in group B; and GlcNAc in group O. Eichornia crassipens, the recognition was that of GalNAc (N-acetyl-D-galactoseamine) and GlcNAc in group O; and Fuc (L-Fucose) and GlcNAc in group A.
Lemna minor and Eichornia crassipens protein extracts (p-ext) increased Vct proliferation and protected to the red cells group O against the hemolytic activity of Vct. Both p-exts did not show any statistical significance on agglutination to Vct when compared to the results from phosphate buffer. According to the results, lectins present in roots may be involved in the proliferation and survival of Vct.
Keywords:
Vibrio cholera – Lemna minor – Eichornia crassipens – lectins
Zdroje
1. Islam MS, Drasar BS, Sack RB. The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J Diarrhoeal Dis Res 1994;12(2):87–96.
2. Islam MS, Drasar BS, Bradley DJ. Attachment of toxigenic Vibrio cholerae 01 to various freshwater plants and survival with a filamentous green alga, Rhizoclonium fontanum. J Trop Med Hyg 1989;92(6):396–401.
3. Vezzulli L, Guzman CA, Colwell RR, et al. Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. Curr Opin Biotechnol 2008;19(3):254–259.
4. Rosas EC, Solano I, Delgado M, et al. Vibrio cholerae: Una bacteria ambiental con diferentres tipos de vida. In: Microbiologia Ambiental, Rosas I, Cravioto, A., Escurra (Eds). Secretaria del Médio Ambiente y recursoso Naturales, Instituto de Ecología y Programa Universitario Medio Ambiente-UNAM, México D.F 2004:47–65.
5. Islam MS, Drasar BS, Sack RB. The aquatic environment as a reservoir of Vibrio cholerae: a review. J Diarrhoeal Dis Res 1993;11(4):197–206.
6. Pruzzo C, Vezzulli L, Colwell RR. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 2008;10(6):1400–1410.
7. Tarsi R, Pruzzo C. Role of surface proteins in Vibrio cholerae attach-ment to chitin. Appl Environ Microbiol 1999;65(3):1348–1351.
8. Harris JB, Larocque RC, Qadri F, et al. Cholera. Lancet 2012;379(9835):2466–2476.
9. Borroto J. Ecology of Vibrio cholerae serogroup O1 in aquatic environments. Rev. Panamericana de salud Pública/ Pan Am J. Public Health 1997;2(5):328–333.
10. López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harb Perspect Biol 2012;2(7): a000398.
11. Seper A, Fengler VH, Roier S, et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 2011;82(4):1015–1037.
12. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009;73(2):310–347.
13. Kierek K, Watnick PI. Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 2003;69(9):5079–5088.
14. Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 1999;34(3):586–595.
15. Wai SN, Mizunoe Y, Takade A, et al. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 1998;64(10):3648–3655.
16. Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 1999;96(7):4028–4033.
17. Wadstrom T, Trust DE. Bacterial superface lectins. Walter de Gruyter & Co., Berli, New York, 1983:342.
18. Coutino-Rodriguez R, Hernandez-Cruz P, Giles-Rios H. Lectins in fruits having gastrointestinal activity: their participation in the hemagglutinating property of Escherichia coli O157:H7. Arch Med Res 2001;32(4):251–257.
19. Van Damme JM, Pneumans WJ, Pusztai A, et al. In Handbook of Plants Lectins: Properties and biomedical aplications. New York Wiley and Sons, 1998.
20. Fisher W. Lectin content and specific in serum and mucus of oyster. J Shellfish Res 1991;10(1): 274.
21. Atzin J. Reservorios naturales de Vibrio cholerae y Vibrio parahaemolyticus. Congreso Nacional de Microbiología, 1998:57.
22. Coutiño-Rodríguez R. Lemna minor y Eichornia crassipens reservorios of Vibrio cholerae El Tor Inaba: Papel de las Lectinas en dicha asociación. Simposio Nacional del Cólera 2005:1.
23. Cordoba-Aguilar E, Herrera Rivero M, Rubi A, et al. Isolation of Vibrio cholerae El Tor Inaba From Lemna minor and Eichhornia crassipens Roots in Veracruz, Mexico. Jundishapur J Microbiol 2014;7(3):e6855.
24. Jesudason MV, Balaji V, Mukundan U, et al. Ecological study of Vibrio cholerae in Vellore. Epidemiol Infect 2000;124(2):201–206.
25. Khan MU, Shahidullah MD, Haque MS, et al. Presence of vibrios in surface water and their relation with cholera in a community. Trop Geogr Med 1984;36(4):335–340.
26. Islam MS. Seasonal rhythm of airway resistance and intrathoracic gas volume in healthy females and males. Respiration 1981;42(3):193–199.
27. Islam MS, Drasar BS, Bradley DJ. Survival of toxigenic Vibrio cholerae O1 with a common duckweed, Lemna minor, in artificial aquatic ecosystems. Trans R Soc Trop Med Hyg 1990;84(3):422–424.
28. Nikaido H, Vaara M. Outer membrane in Escherichia coli and Salmonella thyphimurium. Washington D.C. Neidhardd C Frederick et al., 1987.
Štítky
Hygiena a epidemiologie Infekční lékařství MikrobiologieČlánek vyšel v časopise
Epidemiologie, mikrobiologie, imunologie
2018 Číslo 1
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
Nejčtenější v tomto čísle
- Nová definice sepse (Sepsis-3): cíle, přednosti a kontroverze
- Nozokomiální kandidémie v České republice v letech 2012–2015: výsledky mikrobiologické multicentrické studie
- West Nile virus (linie 2) v komárech na jižní Moravě – očekávání prvních autochtonních lidských případů
- Virová hepatitida A – séroprevalence a proočkovanost v Jihomoravském kraji